
Journal of Engineering Mathematics, Vol. 5, No. 4, October 1971 
Wolters-Noordhoff Publishing Groningen 
Printed in the Netherlands 

263 

T h e  Initial  F l o w  P a s t  an Impuls ive ly  S tar ted  

S phere  at H i g h  R e y n o l d s  N u m b e r s  

S.C.R.  D E N N I S  A N D  J. D.A. W A L K E R  

Department of Applied Mathematics.. University of Western Ontario, London, Ontario, Canada 

(Received December 10, 1970) 

S U M M A R Y  

A solution for the early flow around an impulsively started sphere in a viscous fluid has been developed in powers of 
the time from the start of the motion. The boundary-layer solution considered by E. Boltze has been extended and 
solutions of this type have been developed to include the effect of finite Reynolds numbers. For high Reynolds numbers 
the time series is valid past the time when separation occurs and a number of characteristic flow properties can be 
calculated with reasonable accuracy. 

1. Introduction 

The problem of finding the motion set up by a sphere which is started impulsively with uniform 
velocity in a viscous fluid was first considered by E. Boltze in 1908 [1]. The method used 
consists of scaling the coordinate normal to the body, the stream function and the vorticity 
with respect to a parameter which is proportional to the boundary-layer thickness. The stream 
function and vorticity are then expanded in series in powers of the time after the impulsive 
start. E. Boltze obtained numerical solutions in powers up to and including t 3 for the boundary- 
layer equations. The method was subsequently used by Goldstein and Rosenhead in 1936 [2] 
to obtain solutions for the flow past an impulsively started cylinder. These are analytical 
solutions of the boundary-layer equations up to and including terms in t 2. Squire in 1954 [3] 
extended the Goldstein and Rosenhead solutions for cylinders to the axially-symmetric case. 
The Goldstein and Rosenhead solutions were shown to be in error by Wundt in 1955 [4] and 
were corrected at that time. In a recent paper Wang [5] has used the method of inner and 
outer expansions to consider the impulsively started sphere problem for finite Reynolds 
numbers. This process soon becomes tedious and only functions associated with powers up 
to t are derived. 

The present paper is concerned with the impulsively started sphere problem. Solutions in the 
form of time series, valid for small times after the impulsive start, are obtained for both the 
boundary-layer case and also for finite Reynolds numbers. Some analytical solutions are given, 
but since these rapidly build in complexity, the majority of the solutions were found numerically. 
The accuracy of the Boltze solutions is improved and the solutions for the boundary-layer case 
are continued up to t v. 

2. Equations of Motion and Boundary Conditions 

A spherical polar coordinate system (r, 0, qS) centred at the sphere is chosen. The motion is 
assumed to be axially symmetric and hence all quantities are independent of the azimuthal 
coordinate ~b. Moreover it is assumed that no swirling motion occurs and hence v4 = 0. The 
motion may be described by radial and polar components of velocity (v r, Vo) in a plane through 
the axis of symmetry. There is then only one component of vorticity f', in the q5 direction, given 
by 

t = r (r 0) - (1) 
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The usual non-dimensional quantities defined by 

Vo = Uoo V, v~ = Uoo U,  f, = U~ f /a ,  T = at/U~ (2) 

are introduced and the transformation 4 = log (r/a) is also made, where U~ is the velocity of 
the external stream relative to the sphere, a is the radius of the sphere and Tis the time. Equation 
(1) becomes 

0V 0U 
0-T + v 00 - e l f  (3) 

For an incompressible fluid, the equation of continuity is 

0U 0V 
~ -  + 2U + ~0- + Vcot 0 = 0. (4) 

If we eliminate the pressure from the Navier-Stokes equations we obtain the equation for f, 
the scalar vorticity, given by 

02f Of 0ff 02ff f 
04~ + ~ + c o t 0 ~  + 002 sin20 

R 2r R { ~f Of } 
- v 0- , ~ e  ~ + ~ e  ~ U f - V f c o t O  

(5) 

where R = 2aUoo/v is the Reynolds number, v being the kinematic viscosity. Equations (3), (4), 
(5) are the three basic equations that must be solved subject to the conditions 

U = V = 0 ,  when 4 = 0 ,  (6) 

U ~ c o s 0 ,  V - . - s i n 0 ,  as 4 ~ o o .  (7) 

A further condition used in the subsequent analysis is now derived. This may be termed the 
integral condition. 

The velocity components are written as the series 

U(4, O, t) = ~ p,,(4, t) Pm(Z), (8) 
m = l  

V(4, O, t) = ~ qm(~, t) Q~(z), (9) 
m = l  

wherez=cos  O, Pm(z)are ~1) z a the Legendre functions and Qm (z) = P~ ( ) re the associated Legendre 
functions of order 1. Here we define p(1)(z)= - (1  -z2)  } (dP~/dz), according to the definition of 
Abramowitz and Stegun ([6], p. 334). If equations (8) and (9) are substituted into equations (3) 
and (4), then by the standard methods of orthogonal functions 

Oq,. 
04 + q" -Pro = rm(4, t), (10) 

0p,, 
0~- + 2pm-m(m+ 1)% = 0,  

where 
_ 2 m + l  f ~ 

(4, t) 2m(m+ 1) e*J o f sin OP~ ) (cos O)dO. rm 

If qm is eliminated from equations (11) and (12) then 

OZpm ~-2~ 
042 + 3 - ( m Z + m - Z ) p ~ = m ( m + l ) r m  . 

(11) 

(12) 

(13) 
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lnitial flow past an impulsively started sphere 

We now define 

Sm(~, t) = pm e3~/2 , 

and then we obtain 

C32Sm (m+�89 = m(m+ 1)e 3r rm ~ 2  

265 

(14) 

05) 

From the conditions (7) and the definitions of the various functions it follows that 

e-3~/2sm~6,.,  e 3~/2~Sm/~3~36 m, as ~--,o0, (16) 

where 
6 1 = 1  , ~ m = 0  ( m e  1). 

The conditions (6) give 

s m=(?sm/~?~=O, when ~ = 0 ,  for all m. (17) 

If equation (15) is integrated once we obtain 

c?s m 
93 + (m+ l)sm+Cme~m+'~)~-m(m+ 1)e('~+~)r e-(m-1)~rmd~ = 0.  (18) 

The conditions (17) give Cm = 0 for all m. The conditions (16) imply that 

f ~'" e --(m- 1){rm(~, t )d~ = 315m. (19) 
0 

This is the integral condition. In the subsequent analysis it replaces the boundary conditions 
(7), which are not required further. Effectively it imposes a condition on the solution of the 
vorticity equation (5). The function f must also satisfy the condition 

f--*0 as {-- ,oo.  (20) 

The conditions (6), (19) and (20) are sufficient boundary conditions to solve the problem. 

3. Method of Solution 

The coordinate ~ normal to the sphere is scaled with respect to 

k = 2(2t/R) ~ , (21) 

where k is a parameter proportional to the boundary-layer thickness, according to the equation 

= kx .  (22) 

The radial velocity is also scaled with respect to k. Likewise, the vorticity is scaled with respect 
to k to remove the time singularity in it at t = 0. It is also convenient to make exponential 
transformations to simplify the analysis. New variables are defined by the equations 

kf=e-2kXw,  U = k e - k X u ,  V = e - k X v .  (23) 

Equations (5), (4) and (3) then become, respectively ' 

{ w } 
ctx~ - 3k ~xx + k2 2w + cot 0 ~0 + {02 sin ~ 0 

= 4te2k_, ~w { c~w ~3w } c?t 2e2kXw--2xeZk~C3W#x + 4t u ~  x + v ~  -- wv cot O - 3 k u w  , (24) 

Ou ~v 
0x + ~ + v c o t 0 + k u = 0 ,  (25) 
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~t) k2 ~U a~ - ~0 = w. (26) 

In order to solve these equations the vorticity and velocity components are written as power 
series in k. Thus we assume 

w(x, O, t)= ~ klwi(x, O, t) , (27) 
i = 0  

u(x, O, t) = ~ Uui(x, O, t), (28) 
i = O  

v(x, O, t) = L U vi(x, O, t). (29) 
i = 0  

By equating powers of k, an integral condition for each w i (x, 0, t) may be deduced from equation 
(19). All velocity functions must be zero at x =0. Each wi(x, O, t), ui(x, O, t) and vi(x, O, t) may be 
expanded as a series of functions of x, Legendre functions and powers of time according to the 
expressions 

wi(x, O, t) = ~ t m {9~)m+1 (x)Qm+l(z)+#~',,_l (x)Qm_l(z)+.. .} ,  (30) 
m = O  

ui(x, 0, 0 : E t m {p2m+l (31) 
m = O  

vi(x,O,t) L t'~"(i) ~(x)Qm+l(z)+q~{~ l(x)Qm_l(Z)+...} (32) 
m=O 

where the first subscript of the x functions refers to the power of t and the second subscript 
refers to the Legendre function and is used if there is more than one term for a power of t. 
Each sum in the braces in equations (30), (31) and (32) terminates when the second subscript 
becomes negative. For convenience we also define the operators 

d 2 d 
Lm = dx 2 + 2X ~x x + (2 -4m) ,  (33) 

d 2 d 
L*,, - d x  2 + 2X ~x x - 4m. (34) 

4. The Boundary-layer Expansion 

If the expansions (27), 
O (k) are neglected, we 

(28), (29) are substituted in equations (24), (25) and (26) and terms of 
get the equations 

a2Wo aWo aWo { eWo eWo } 
~?x2 + 2X~x x + 2wo-4 t  ~ - = 4 t  u0 c~ -  x + V o ~  0 - WoV o c o t 0  , (35) 

8Uo 8Vo 
~x- + 8 0  + v~ cot 0 = 0 ,  (36) 

~V o 
0x - Wo. (37) 

The above equations are the unsteady boundary-layer equations. The expansions (30), (31), (32) 
are substituted and, by equating coefficients of the powers of t, the equations which result for 
the boundary-layer functions (written without the zero superscript) are 
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L= g=j = c=j(0), (38) 

dqmj 
dx - gmj, 

(39) 

dpmj 
dx j (]+ 1)q,,,j = O, (40) 

where F,.; are defined in the Appendix. 
The integral condition for 9o is 

j ~ godx ~,  
0 

while for the other vorticity functions we have 

(41) 

�9 / 

i dx = 0 .  (42) 
�9 0 

The solutions for the 9 functions must satisfy the conditions (41) and (42) and also, naturally, 
they must vanish as x--+ oo. The solutions for the p and q functions must all satisfy the initial 
conditions 

pmj(O) ~- qmj(O) = 0 .  (43) 

Exact solutions satisfying these conditions can be obtained for the functions associated with 
the lower powers of t in the expansions (30), (31) and (32)�9 The expressions soon become 
complicated, and the functions associated with higher powers of t are obtained numerically. 

5. High-order Approximations 

By means of higher-order approximations we can calculate the departure from boundary- 
layer theory for any large, but finite, value of R. In the present method of solution it is relatively 
easy to calculate higher-order terms and we can describe the procedure generally as follows. 

The coefficient of k" in each of equations (24), (25) and (26) is, respectively, 

92 W n 9W n (~W n cw._ 1 2 % _  e - cot 0 00 
c?x~ + 2x ~? x - 2 ( n - 1 ) w . - 4 t  9t = 3 9x 

(~2Wn - 2 

902 
+ w._2 + ~ (2/~)~{4tgw. ~ &v, ; f  

sin e0  " 9t + 2 ( n - - i - - 1 ) w " - i - - e x  9x J 
i--1 

~ {  9w._i 8w,, i } . -1  
+ 4t ui- f~x + v ~ - - -  v i w . _ i c o t O  - lZt Z u i w . - i - 1 ,  (44) 

i=0 90 i=o 

OU n 9v n 
9x + ~0- + v. cot 0 + u. 1 --- 0 ,  (45) 

9Vn 9Un 2 (46) 
& - w .  + 9-0-- 

In these equations a negative subscript indicates that the function is zero. Substitution of the 
expansions (30), (31) and (32) and equating coefficients of powers of t gives differential equations 
for the k" functions. These can be written 
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3dg~- 1) 
D*g(~) = Fmj(n)+flmj(n) + d ~  + {'](]+ 1)-2}g~J-2) 

+ i = 1 ~ -  . ~  (2x)i { 4 m g ~ [ i ) + 2 ( n - i - 1 ) g ~ j - i ) - 2 x  , (47) 

dq~n} a(,!+#,72) (48) 
" - -  o m J  - -  t ' m  3 

dp~} j ( j+  l ) q ~ + p ~ _ l ) = O  (49) 
dx 

where a negative superscript indicates that the function is zero and the operator D*~ is defined by 

D, =/2,,+~,_ 1)/2 Y/ odd,  (50) 

= Era+n~ 2 n e v e n  . 

The F~(n) and fiij(n) are defined in the Appendix. 
The integral condition for the k" vorticity functions is, in general, 

g }dx = -  . .  (51) 
o i= 1. o i ! g m j  a N  . 

The vorticity functions must all vanish as x--. Go and the p and q functions must vanish when 
x = 0. As in the case of the boundary-layer expansion, exact solutions can be obtained for the 
functions associated with the lower powers of t and numerical methods must be used to obtain 
the functional coefficients of the higher powers of t because the functions become too compli- 
cated. To complete the theory we shall now briefly describe the numerical procedure. 

6. Numerical Methods 

The differential equations for the vorticity functions a"). are of the form 
o m J  

g" + 2 x g ' -  o~g = K (x) (52) 

If we define 

g(x) = e -x2/2 G(x) ,  (53) 

then G satisfies the equation 

G " - r ( x )  G = / ( x ) ,  (54) 

where 

r(N) = N2+1- , U(N)= eX2/2K(N). (55) 

The equation (54) may be written in finite-difference form at a grid point x = ih as 

(1 - h Z r i  _ ,/12) G, a + (1 - h2ri+ a/12)Gi+, - ( 2  + 5hZr~/6)G i 

h 2 
lZ (f~-i + 10f~+f~+ 1)~-ctOi = O,  (56) 

where 

c' = 66/240 - 1368/15120+... 

and h is the step size used. Neglect of the correction term then gives an accurate approximation 
to the differential equation (see Fox [7], p. 68). 

All vorticity functions must vanish at infinity, in practice, a finite field length must be chosen 
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Initial f low past an impulsively started sphere 269 

and this boundary condition imposed at this finite distance. Since there is no intrinsic way to 
choose the finite length, the field was increased until no significant change was observed in the 
solution. A length of x = 6 was finally used with a step size of h = 0.05. The step size was halved 
as a check on the accuracy and no appreciable change rcs;ulted in the solutions. 

A boundary condition for the vorticity is required at x = 0. This is obtained by making each 
vorticity function satisfy the appropriate integral condition. The boundary condition at x = 0 
is arbitrarily put equal to 1 and a solution of equation (52) is obtained. If YN denotes this 
solution, the actual solution Yr must be YN plus a multiple of the homogeneous solution y~, thus 

Yr = YN + CyH. (57) 

The homogeneous solutions of L m = 0 which vanish as x-* o~J are 

H{om)(x) = e -x2/2 D_ 2m(,f2x), (58) 

where 

e-X~/2 D_ 2 m ( ~ x )  dx - ~mT,.., �9 
0 z.. f[i;  

The similar homogeneous solutions of L* = 0 are 

H(o ~)* (x) = e x2/2 D_ 2m-1 (N/2X) , (59) 

where 

1 

Here D~ (x) are the parabolic cylinder functions. 
The constant C in equation (57) may now be determined since yT'must satisfy the appropriate 

integral condition obtained from (19) by equating powers of t and k. To obtain Yr from (57), 
Yn would have to be evaluated numerically, since the parabolic cylinder functions are not 
tabulated well enough for use. However it is just as easy to determine the correct boundary 
condition at x = 0 and solve the problem again. Since 

H(o m) ( 0 )  = 2 m -1  IP (l'yl) H(om), N/~ 
r (2m) '  (0) - 2 m + } r ( m + l )  

the correct boundary condition yy(0) may be determined once the value of C has been cal- 
culated. 

When the finite-difference approximation (56) to equation (54) is used at each internal point, 
a matrix problem 

A G = B  

results, where A is a tridiagonal matrix. This is solved by the direct method given by Rosser [8]. 
Finally, once the vorticity has been determined for a particular g~} the corresponding polar 
velocity q~} and radial velocity p~} may be determined by a step-by-step integration from x = 0, 
where both must be zero. The ordinary Simpson formula was used in general, but to start the 
integration the formula 

fx, h 
ydx  = (9 yo +19 y l -  5 y2 + Y3) 

xo 

was used. The sixth-order differentiation formulae given by Bickley [9] were used to evaluate 
the vorticity derivatives. 

7. Exact Solutions 

The boundary-layer vorticity functions have been derived by exact analysis up to and including 
t h e  t 2 functions. As shown by Squire [3], these solutions may be derived from the Goldstein- 
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Rosenhead solutions [2], but the following were derived from the equations (38), (39) and (40) 
subject to the Col~ditions (41), (42) and (43). The vorticity functions are listed, along with some 
of the associated velocity functions, below. The functions associated with the zero power of 
t are 

go{ ) = qo( ) = erf , Po{ ) = 3 err + . (61) 

The vorticity function associated with the first power of t is 

4 
91(X) = x2e  -x2 e r f x  + 2~x/~ e -x2 erfx  + 1r3 xe_2X2 _ -xeTc x2 

e-X2 t 
+ A .  Jx err x -  x + ~ -  f ,  (62) 

where A = 2/2 - 3. 
These functions and the velocity functions associated with the first power of t may be 

derived from Squire [3~, as may the functions associated with the power of t 2. They also have 
been derived from basic principles by Walker [10]. The functions given here were the only 
ones required to derive exact solutions for the higher-order terms. 

The functions of order k have been derived up to and including the functions associated with 
the term kt. The terms of order k associated with the zero power of t are 

3x2 x~ 3xe-X~ 
9 ? ) = 3 ( 1 - e r f x )  _-/~-e- + ~ ,  (63) 

X 2 e - .,~2 e x2 1 t 

q(ol) = _ 3 ~x erf x -  x - ---/~z + ---/~ -~/Tr 1' (64) 

9 3x e 6x 
p(o 1'= --3X 2 e r f x - � 8 8  erfx  - 2x/~xe-X~ + -~ -  + x/Tt. (65) 

The vorticity function associated with the term kt is 

2B'xe  -xz { xe ~ 
9(11)=B'(2x2+l)(erfx-1)  + x/~c + A 3-- �88  2 ~ )  

1 
- 3 ( 2 x 2 + l ) { ( e r f x )  2 - 1 } -  2 ~  { 6 x S + x 3 + 3 x } e  -x~ erfx 

1 {4x3+3x}e_X2 ' (66) 1 {20x4+6x2_18}e  ~2+4,j7c ( 3 x 4 - x 2 - 1 ) e - 2 X ~ + ~  

where  
57 1 

B ' =  - Q / 2  + 16 + 

The first functions of order k 2 are 

3 19 
9~o 2) = 2x/~ x6 e-xZ _ 4x/~ x4 e-X2 , 

q(o2 ) 3X 2 + --1  9 ~.2 = ~ e r f x + ~ e r f x - -  xS e- X2 + ~,,/ x3 e 22 + _ _  x e- - -  

3 3 X 3 6X 2 
xge-xZ x2e-X2 . p(o2'= 2x 3 erf x + 23 x erf x + w ~ -  + 

2 , / 2  %/7C 

(67) 

3x 
x/re, (68) 

(69) 
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Finally, the first vorticity function of  order k 3 is 

1 
(j~) - 4~/zc (2x9-13xT +13xS)e x~. 

271 

(70) 

8. Results 

The boundary-layer functions were evaluated numerically up to t 7, the k functions to kt 6, the 
k 2 functions to kZt 4, the k 3 functions to k3t 3, the k ~ functions to k4t 2 and the k 5 functions to 
k 5 t. The values of  the vorticity functions on the surface of  the sphere (x = 0) are given in Table 1, 

TABLE 1 

B o u n d a r y  

L a y e r  k k 2 k 3 k 4 k 5 

i = 0  i = t  i ~ 2  i = 3  i = 4  i = 5  

g~) 1.6926 1.5000 

g~) - t . 3 3 3 4  2.9135 

g ~  0.0778 0.7251 

g ~  -0 .1507 1.8249 

g ~  0.0406 1.1319 

g ~  0.0161 0.3533 

g~  -0 .0476 0.5757 

g ~  -0 .0039 0.5523 

~ 0.0221 -0 .4118 

g ~  -0 .0140 0.2790 

g ~  -0 .0130 --0.1063 

g ~  0.0056 -0 .3683 

g ~  0.0092 -0 .0065 

g ~  0.0087 -0 .1572 

# ~  -0 .0049 -0 .2944  

g ~  -0 .0020 0.6496 

gq~ 0.0001 

~ o.oo8o 
gq~ 0.0016 

g ~  -0 .0020 

0. 

- 7.624 

- 4.480 

-12 .58  

- 14.30 

- 7.638 

- 6.786 

- 12.78 

1.652 

0. 

20.85 

18.38 

68.45 

107.7 

83.47 

0. 0. 

- 58.35 166.8 

- 65.83 

-331 .8  

while the values of the vorticity derivatives at x = 0 are given in Table 2. Most  of the properties 
of physical interest can be worked out from these. 

The drag on the sphere is 

D = -rca  2 Po sin 20dO-2rcpvUo~a ~o s in20dO,  (71) 
�9 o . o 

where Po, ~o are the pressure and vorticity evaluated at x = 0 .  The drag coefficient CD= 
D/(~pU~a 2) is composed  of two parts, Cp and Cj.. From (71), the friction drag coefficient is 

= sin 0~o/X~)(cos O)dO. C• e o 

if ~o is written as a series of Legendre functions 

1 
Gm (0, t) Qm (z), 
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Boundary 
Layer k 

i = 0  i = 1  

k 2 

i = 2  

k 3 

i = 3  

k 4 

i = 4  

k 5 

i = 5  

dg(~)/dx O. O. 
dg~)/dx 3.0000 - 7.6604 

dg~]/dx 0. _ 2.8834 

dg~)3/dx O. - 4 . 8 6 1 5  

dg~/dx O. - 4.6965 

dg~/dx 0. - 1.4299 

dg~/dx o. - 0.9838 
dg(~)3/dx 0. - 2.0028 

dg~/dx 0. 1.0256 

dg~)ffdx O. - 0 . 5 1 1 6  

dg~)4/dx O. 0.9795 

dg(5~)6/dx 0. 1.2690 

dg~)~/dx O. - 0 . 1 7 3 6  

dg~)3/dx O. 0.4770 

dg~/dx O. 1.6112 

dg~/dx O. - 3.0453 

@~/d~ o. 
dg~)4/dx O. 
dg~6/dx O. 
dg~)8/dx O. 

0. 

24.36 

17.53 

42.76 

59.40 

29.83 

22.89 

54.94 

- 4 . 4 1  

0. 

- 73.81 

- 75.66 

- 2 6 1 . 1  

- 4 7 2 . 1  

- 349.6 

0. 

223.2 

286.1 

1372. 

0. 

- 6 8 1 . 5  

then 

16 
= o (0, t). 

The pressure drag coefficient is 

- Po sin 20dO. cp p U L  o 

From the equations of motion it is found that 

- -  + ) r  ~=0 a ~ ' 

and if we substitute for ~ and integrate with respect to 0, the result 

pvUoo 
.._, + Pro(z) 

P o -  ka m = l  m k ~ X / x = o  , 

is obtained, and hence 

8 (G 1 0Gl(0, t)) 
Cp - 3Rk 1 (0, t) + ~ g x -  " 

The quantity Cf may now be written as a time series E (0, t) where 
oO 

E(x, t) = 16 ~o ki {g(~ + tz"(i) + t4 g~)a + t6 g~)~ + "''} 
~421 

and C v may be derived from equation (74) as 
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1 c~E Cp=I  (E - ~ )  (75) 
k ~ - = 0 '  

where the functions 9~') and their derivatives at x = 0 are given in Tables 1 and 2. The temporal 
development of the drag is given in Table 3 for various Reynolds numbers. 

Separation first occurs at 0 = 0  when (Ow/O0)o-o becomes zero. This gives the equation 

~ ki (i) (i) 2 (i) (i) 3 
(3 g32 q- 10 g34)  6 g 2 3 ) + t s  {go +3tsgl +ts (g2 t  + (i) (i) 

i = 0  

t4(:,(i) + o ~ 1 +  6 ~,~) + 15 g ~ )  + 0 '43  ts "'" }x=O = 0. (76) 

Equation (76) is solved for t s, the time of separation, by Newton's  method. Some results for 

TABLE 3 

R t =  .05 t = . l  t =  .2 t =  .4 t =  .6 

C I 2.46 
40 Cp 1.23 

Co 3.69 

Cy 1.05 .75 .55 .40 
200 Cp .53 .38 .28 .22 

C o 1.58 1.14 .83 .62 

Cf .46 .33 .23 .17 .15 
1000 Cp .23 .17 .12 .10 .096 

C o .69 .49 .36 .27 .25 

TABLE 4 

R t s 

400 .584 
500 .554 
700 .523 

I000 .499 
104 .426 
10 s .406 

.396 

various Reynolds numbers are given in Table 4. Equation (76) fails to have a positive root for 
Reynolds numbers below approximately 350 and this is because the separation times for these 
Reynolds numbers are greater than t = 0.6. The series is not thought to be meaningful at times 
higher than 0.6 and certainly not for these Reynolds  numbers at high times. Boltze gives ts for 
R = ~ as 0.392. His series was computed up to t 3 while the present series is computed to t 7. 

The Blasius series [11] for axially-symmetric bodies gives the separation angle for steady 
flow as 70.4 ~ In Fig. 1 the separation angle is plotted as a function of time for several Reynolds 
numbers. The result for R = ~ is probably not valid much beyond t = 1.As a further comparison,  
the Blasius series gives 

1 (~ro) 3.4085 
pU~ \ ~ 0 / 0 = ~  = R~ 

where % is the local skin friction. Evaluation of this quantity from the boundary-layer series 
indicates that it gradually decreases to 3.395R -~- at t =  1 and passes through the Blasius value 
at t =.0.875. 
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It is difficult to assess the upper limit in time for which the time series will converge. In the 
boundary-layer case, after t=0 .6  the equi-vorticity lines at some distance from the body 
develop physically unreal indentations in the wake region. For  this reason, it is felt that the 
upper limit for convergence within the whole field is t=0.6.  However, close to the body the 
series is thought to be meaningful for higher times as evidenced by the comparisons with the 
Blasius series for steady flow. 

For  finite Reynolds numbers, the series should also converge in powers of k for the results to 
be valid. For a particular Reynolds number, an estimate of the region of convergence may be 
obtained by comparing successive approximations to the drag coefficients' in powers of k at 
various times. Thus R = 1000 can be considered valid at least until t = 0.6 while R = 40 can only 
be considered valid as far as t = 0.05. 

8Q 

70 

60 

5O 

40 

Stead 2 Value ~ 

lO 

�9 -4 110 1.12 
t 

Figure  I. Separa t ion  angle versus time. 

~ _ . _ / _ ~  R=c~ 

~4 ~!6 ~!8 2.o 

Figure  2. S t reaml ines  lbr R - 1000 at  t = 0.6. 

To plot the streamlines the dimensionless axially-symmetric stream function q) is introduced 
by the equations 

1 ~4, 1 0r 
U - V (77) 

e 2~ sin 0 00 ' e 2~ sin 0 (~ 

It may be deduced from either of these equations that 

I]/= e2~Q1 (z) ~ Pm(~'t) 
m=l re(m+ 1) Q.,(z). (78) 

The flow pattern for Reynolds number 1000 at t = 0.6 is plotted in Fig. 2. The streamlines in the 
boundary-layer case are also plotted in Figs. 3 (a) to 3 (c). In order to show the development 

Journal of Engineering Math., Vol. 5 (1971) 263 278 



Initial flow past an impulsively started sphere 275 

~ ~ = . 5  

~ = . 3  
~2 = .15 
u2 =.05 
~ =.005 

Figure 3(a). Slrcamlines for boundary-layer flow at t=0.4. 

T=.3 

uZ = -15 
~=.05 

~= .OO5 

Figure 3(b). Streamlines for boundary-layer flow at t -0 .6 .  

Figure 3(c). Streamlines for boundary-layer flow at t=0.8. 
(Enclosed streamlines, starting from the centre, are ~ , -  -0.005, ~ , -  0.003, ~p= 0.001). 

with time clearly, R has been put equal to 100 in this case. The temporal  development of surface 
vorticity for R = 1000 is shown in Fig. 4 and for R--  oo in Fig. 5. 

The pressure distribution on the surface is given by 

4j 
Ipu  - R + d O ,  

~=0 

where p~ is the pressure at O=Tr. It follows that 

p - p .  _ 4 ~ Gm + {( -1)m-Pro(z)}  - (79) 
1 2 ~pU~ kRm=l k ~x )x=o 

-4~ 

- 4 0  

-32 

(~ t=  .2 
-24 t = . 4  

t=  .6 

-16 =" 

- 8  

~0 �9 1~0 ~ ' ~ 0  o 120 ~ 6 ~  30 ~ 0 ~ 

e 

Figure 4. Temporal development of the vorticity on the surface of the sphere for R = 1000. 
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-14 .0  

12.C 

~or 

4s 

o . 6 ~  
180  ~ 1,50" 120  ~ 90  ~ 60  ~ 30  ~ 0 ~ 

Figure 5. Temporal development of the vorticity on the surface of the sphere for boundary-layer flow. 

P-I 

180 150 120 90 60 30 0 

Figure 6. Temporal development of the pressure on the surface of the sphere for ~R = 1000. 

The temporal  development of surface pressure is shown in Fig. 6 for R = 1000. Equation (79) 
indicates a t -~ singularity in the surface pressure at t=0 ,  but if t is small and non-zero then 
the right side tends to 9 (cos 2 0 -  1)/8 as R ~  o% which is the pressure distribution for potential 
flow. 

In summary,  the series method gives solutions for all Reynolds numbers which are valid at 
early times after the impulsive start. Although the region of convergence is quite small for low 
Reynolds number  for high Reynolds numbers it is valid for times past the occurrence of sepa- 
ration. This series may be used to check the results of a time-dependent integration at the early 
stages or it could be used to start the integration off. It gives the correct solution at small times 
and moreover  eliminates part  of the difficulty of having to take a large number  of time steps 
near t = 0  which was encountered by Rimon and Cheng [12] in their numerical study of the 
problem. 
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Appendix 

Due to the copious quantities of terms that appear  on the right hand side of the differential 
equations, it is necessary to devise a mechanism to write the equat ions in a more compact  form. 
Since similar groups of terms appear  repeatedly this is done by defining the functions F~j(n) 
a n d  riij(n), 

Fo (n) = rio(n) = 0 ,  (A-l) 

F 1 (n) = ~ ~ p(d) dg(~ (A-2) 
j=o dx ' 

n - I  
ril(n) = --4 ~ ~on(J)r'(").0 , (A-3) 

j = l  

/~21(H) = 4  ~ {3P(~ , dg(k' At,( k, } . . . . . . . .  (j) _-uo • 12 q(d) g(1 k) (A-4) 
j= 0 dx el dx " ' 

m--1 
ri21 (n) = --  54 2 {9 p~)g(a m) - 3 U1 "(j) ff0/*(m)'(J , (A-5)  

j=o  

F23 ,n )=  4 ~ {2 p(d' dg(lk) p(1 j' dg(~ 2 q(d)g(lk) I ,A-6) 
~=o ~ + d ~ -  - ' 

n-1  
ri23(n ) = _ 4 2 {6p~)g(I")+3P]J)gg"J , (A-7)  

j=o 

= { 7 p,g, o(,, dg'o 12X(J) t*Y23 q- 3 P  ( / ) " u l  q- " e 2 1  
j= o ~ x x  + t'o dx dx ~ + 

a ..0) dg(~ gn fl(J) :,(k) • 36 q(J)g(k)} (A-8) 
--  JP'23 d X X  "1- ~'dt'/0 Y 2 3 ~  

n-1  
ri32 (n) = - 4 ~ y')l ,.(J)..(.,) + 36 "(j)-( ') • o ,.(J) ..(.,) • "~1 ..(J) ..(m)_ a ..(J) ~,(,.)~ (A-9) ~,'r /:/21 F0 Y 2 3 ~ ' F 1  ~/1 ~ t F 2 1 Y 0  / F 2 3 Y 0  j , 

j - 0  

Fa4(n)= 3~ ~ /15p~)dg~k)3 9p(lJ) dg]k) dg~) 
U23 dx , d x x  + & - x  + 5 ,,(J) 

n--I 

ri34(n) = ~s Z {45p(d)g(2m3)+27p(li)g(~')+ 15"(/) .~(,.)'t --  F23YO ) , 
j=0 

where k = n - j  in F,j(n) and m = n - j -  1 in flij(n). 
The terms that  appear  on the right side of equat ions (38) and (47) for functions associated 

with powers of t greater than t 3 a r e  not  given here, due to space limitations. They  are given by 
Walker  [10]. 
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